Note on bi-ideals in ordered semigroups and in ordered groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 198-201
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that an ordered semigroup is right and left simple if and only if it does not contain proper bi-ideals. An example is constructed showing that an ordered semigroups without proper bi-ideals need not be an ordered group.
@article{ZNSL_1999_265_a13,
author = {N. Kehayopulu and I. S. Ponizovskii and M. Tsingelis},
title = {Note on bi-ideals in ordered semigroups and in ordered groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {198--201},
year = {1999},
volume = {265},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a13/}
}
TY - JOUR AU - N. Kehayopulu AU - I. S. Ponizovskii AU - M. Tsingelis TI - Note on bi-ideals in ordered semigroups and in ordered groups JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 198 EP - 201 VL - 265 UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a13/ LA - en ID - ZNSL_1999_265_a13 ER -
N. Kehayopulu; I. S. Ponizovskii; M. Tsingelis. Note on bi-ideals in ordered semigroups and in ordered groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 198-201. http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a13/