Local duality for modules over Noetherian commutative rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 169-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some applications of the general theorem on the existence of local duality for modules over Noetherian commutative rings are given. Let $\Lambda$ be a Noetherian commutative ring, let $\mathscr M=\{\mathfrak M\}$ be a set of maximal ideals in $\Lambda$, and let $\widehat\Lambda=\varprojlim\Lambda_\mathfrak M$, $\Gamma(\Lambda)=\prod\limits_{\mathfrak M\in\mathscr M}\widehat\Lambda_\mathfrak M$. Then the category of Artin modules is dual to the category of Noetherian modules. Several structural results are proved including the theorem of the structure of Artin modules over principal ideal domains. For rings of special kinds, theorems on double centralizers are proved.
@article{ZNSL_1999_265_a11,
     author = {M. B. Zvyagina},
     title = {Local duality for modules over {Noetherian} commutative rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--188},
     year = {1999},
     volume = {265},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a11/}
}
TY  - JOUR
AU  - M. B. Zvyagina
TI  - Local duality for modules over Noetherian commutative rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 169
EP  - 188
VL  - 265
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a11/
LA  - ru
ID  - ZNSL_1999_265_a11
ER  - 
%0 Journal Article
%A M. B. Zvyagina
%T Local duality for modules over Noetherian commutative rings
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 169-188
%V 265
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a11/
%G ru
%F ZNSL_1999_265_a11
M. B. Zvyagina. Local duality for modules over Noetherian commutative rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 6, Tome 265 (1999), pp. 169-188. http://geodesic.mathdoc.fr/item/ZNSL_1999_265_a11/