Real functions in weighted Hardy spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 138-146

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem is discussed of describing the weights $w$ on the unit circle for which the analytic and antianalytic subspaces of the corresponding weighted space $L^p(w)$ have nonzero intersection. In the special case of $p=2$ the problem is equivalent to a well-know problem about the exposed points in $H^1$. We show that the property in question is local, i.e., it depends on the local behavior of the weight $w$ at each point of the unit circle, and we obtain some necessary and sufficient condition in terms of Herglotz integrals.
@article{ZNSL_1999_262_a5,
     author = {V. V. Kapustin},
     title = {Real functions in weighted {Hardy} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--146},
     publisher = {mathdoc},
     volume = {262},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a5/}
}
TY  - JOUR
AU  - V. V. Kapustin
TI  - Real functions in weighted Hardy spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 138
EP  - 146
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a5/
LA  - ru
ID  - ZNSL_1999_262_a5
ER  - 
%0 Journal Article
%A V. V. Kapustin
%T Real functions in weighted Hardy spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 138-146
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a5/
%G ru
%F ZNSL_1999_262_a5
V. V. Kapustin. Real functions in weighted Hardy spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 138-146. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a5/