The limit of the Lebesgue constants of summation methods of Fourier--Legendre series determined by a multiplier function
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 71-89

Voir la notice de l'article provenant de la source Math-Net.Ru

In what follows, $C[-1,1]$ is the space of continuous functions $f\colon[-1,1]\to\mathbb R$ with uniform norm, $P_k$ are the Legendre polynomials such that $P_k(1)=1$, $J_0$ is the Bessel function of zero index. We consider sequences of linear operators (summation methods) $U_n\colon C[-1,1]\to C[-1,1]$ determined by a multiplier function $\varphi$: $$ U_nf(y)=\int\limits_{-1}^1f(x)\sum_{k=0}^{\infty}\varphi(k/n)(k+1/2)P_k(y)P_k(x)\,dx. $$ The norms $\mathfrak L_n$ of the operators $U_n$ are called the Lebesgue constants of the summation method. The main result is the following. If $\varphi$ is continuous on $[0,+\infty)$, \begin{gather*} \sum_{k=0}^{\infty}\varphi^2(k/n)(k+1/2)\infty \text{ for each
@article{ZNSL_1999_262_a2,
     author = {O. L. Vinogradov},
     title = {The limit of the {Lebesgue} constants of summation methods of {Fourier--Legendre} series determined by a multiplier function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--89},
     publisher = {mathdoc},
     volume = {262},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a2/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - The limit of the Lebesgue constants of summation methods of Fourier--Legendre series determined by a multiplier function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 71
EP  - 89
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a2/
LA  - ru
ID  - ZNSL_1999_262_a2
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T The limit of the Lebesgue constants of summation methods of Fourier--Legendre series determined by a multiplier function
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 71-89
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a2/
%G ru
%F ZNSL_1999_262_a2
O. L. Vinogradov. The limit of the Lebesgue constants of summation methods of Fourier--Legendre series determined by a multiplier function. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 71-89. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a2/