The limit of the Lebesgue constants of summation methods of Fourier--Legendre series determined by a multiplier function
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 71-89
Voir la notice de l'article provenant de la source Math-Net.Ru
In what follows, $C[-1,1]$ is the space of continuous functions $f\colon[-1,1]\to\mathbb R$ with uniform norm,
$P_k$ are the Legendre polynomials such that $P_k(1)=1$, $J_0$ is the Bessel function of zero index.
We consider sequences of linear operators (summation methods) $U_n\colon C[-1,1]\to C[-1,1]$ determined by a multiplier function $\varphi$:
$$
U_nf(y)=\int\limits_{-1}^1f(x)\sum_{k=0}^{\infty}\varphi(k/n)(k+1/2)P_k(y)P_k(x)\,dx.
$$
The norms $\mathfrak L_n$ of the operators $U_n$ are called the Lebesgue constants of the summation method. The main result is the following.
If $\varphi$ is continuous on $[0,+\infty)$,
\begin{gather*}
\sum_{k=0}^{\infty}\varphi^2(k/n)(k+1/2)\infty \text{ for each
@article{ZNSL_1999_262_a2,
author = {O. L. Vinogradov},
title = {The limit of the {Lebesgue} constants of summation methods of {Fourier--Legendre} series determined by a multiplier function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {71--89},
publisher = {mathdoc},
volume = {262},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a2/}
}
TY - JOUR AU - O. L. Vinogradov TI - The limit of the Lebesgue constants of summation methods of Fourier--Legendre series determined by a multiplier function JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 71 EP - 89 VL - 262 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a2/ LA - ru ID - ZNSL_1999_262_a2 ER -
%0 Journal Article %A O. L. Vinogradov %T The limit of the Lebesgue constants of summation methods of Fourier--Legendre series determined by a multiplier function %J Zapiski Nauchnykh Seminarov POMI %D 1999 %P 71-89 %V 262 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a2/ %G ru %F ZNSL_1999_262_a2
O. L. Vinogradov. The limit of the Lebesgue constants of summation methods of Fourier--Legendre series determined by a multiplier function. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 71-89. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a2/