The operator rot in an arbitrary region of finite measure
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 227-230
Voir la notice de l'article provenant de la source Math-Net.Ru
The definition of the self-adjoint operator rot in an arbitrary region $\Omega\subset\mathbb R^3$ of finite measure is investigated. The spectrum of the operator is discrete. One can prove Weyl's asymptotic formula for the eigenvalues. Under an additional condition concerning the boundary of the region
a remainder estimate can be obtained.
@article{ZNSL_1999_262_a13,
author = {N. D. Filonov},
title = {The operator rot in an arbitrary region of finite measure},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {227--230},
publisher = {mathdoc},
volume = {262},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a13/}
}
N. D. Filonov. The operator rot in an arbitrary region of finite measure. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 227-230. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a13/