On polynomial bases for the space $C[-1,1]$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 223-226
Voir la notice de l'article provenant de la source Math-Net.Ru
For any $\varepsilon>0$ an orthogonal basis for the space $C[-1,1]$ is constructed consisting of algebraic polynomials $P_n$ with deg $P_n\le n(1+\varepsilon)$. The growth of degrees is best possible.
@article{ZNSL_1999_262_a12,
author = {M. A. Skopina},
title = {On polynomial bases for the space $C[-1,1]$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {223--226},
publisher = {mathdoc},
volume = {262},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a12/}
}
M. A. Skopina. On polynomial bases for the space $C[-1,1]$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 223-226. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a12/