On polynomial bases for the space $C[-1,1]$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 223-226

Voir la notice de l'article provenant de la source Math-Net.Ru

For any $\varepsilon>0$ an orthogonal basis for the space $C[-1,1]$ is constructed consisting of algebraic polynomials $P_n$ with deg $P_n\le n(1+\varepsilon)$. The growth of degrees is best possible.
@article{ZNSL_1999_262_a12,
     author = {M. A. Skopina},
     title = {On polynomial bases for the space $C[-1,1]$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {223--226},
     publisher = {mathdoc},
     volume = {262},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a12/}
}
TY  - JOUR
AU  - M. A. Skopina
TI  - On polynomial bases for the space $C[-1,1]$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 223
EP  - 226
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a12/
LA  - ru
ID  - ZNSL_1999_262_a12
ER  - 
%0 Journal Article
%A M. A. Skopina
%T On polynomial bases for the space $C[-1,1]$
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 223-226
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a12/
%G ru
%F ZNSL_1999_262_a12
M. A. Skopina. On polynomial bases for the space $C[-1,1]$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 223-226. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a12/