On the porosity of the limit set and the boundedness of the oscillation of the function $\log(\operatorname{dist}(X,\Lambda))$ in the case of a~Fucshian group without parabolic elements
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 214-222
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Lambda$ be the limit set of a finitely generated Fucshian group of the second kind. If the group does not contain parabolic elements, then $\Lambda$ is porous and the function $\log(\operatorname{dist}(X,\Lambda))$ belongs to the class BMO.
@article{ZNSL_1999_262_a11,
author = {O. L. Semenova},
title = {On the porosity of the limit set and the boundedness of the oscillation of the function $\log(\operatorname{dist}(X,\Lambda))$ in the case of {a~Fucshian} group without parabolic elements},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {214--222},
publisher = {mathdoc},
volume = {262},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a11/}
}
TY - JOUR
AU - O. L. Semenova
TI - On the porosity of the limit set and the boundedness of the oscillation of the function $\log(\operatorname{dist}(X,\Lambda))$ in the case of a~Fucshian group without parabolic elements
JO - Zapiski Nauchnykh Seminarov POMI
PY - 1999
SP - 214
EP - 222
VL - 262
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a11/
LA - ru
ID - ZNSL_1999_262_a11
ER -
%0 Journal Article
%A O. L. Semenova
%T On the porosity of the limit set and the boundedness of the oscillation of the function $\log(\operatorname{dist}(X,\Lambda))$ in the case of a~Fucshian group without parabolic elements
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 214-222
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a11/
%G ru
%F ZNSL_1999_262_a11
O. L. Semenova. On the porosity of the limit set and the boundedness of the oscillation of the function $\log(\operatorname{dist}(X,\Lambda))$ in the case of a~Fucshian group without parabolic elements. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 214-222. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a11/