Hardy and Bellman transformations in spaces close to $L_\infty$ and to~$L_1$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 204-213

Voir la notice de l'article provenant de la source Math-Net.Ru

Replacement of the coefficients of a trigonometric series by their arithmetic averages gives rise to the Hardy operator. The Bellman operator is its adjoint. The spaces $L_p$ with $p\in[1,\infty)$ are invariant under the Hardy transformation. This result was proved by Hardy. On the other hand, the space $L_\infty$ is not invariant under the Hardy transformation and $L_1$ is not invariant under the Bellman transformation. B. I. Golubov has proved that the space BMO is not invariant under the Hardy transformation and $\operatorname{Re}^{+}H$ is not invariant under the Bellman operator. In the present paper the exact “shift” of the domain under the action of these operators is described for certain Orlicz, Lorenz, Marcinkiewicz spaces, BMO, and $\operatorname{Re}^{+}H$. For the Hardy operator this shift occurs if the domain is close to $L_\infty$, and for the Bellman operator if the domain is close to $L_1$.
@article{ZNSL_1999_262_a10,
     author = {V. A. Rodin},
     title = {Hardy and {Bellman} transformations in spaces close to $L_\infty$ and to~$L_1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {204--213},
     publisher = {mathdoc},
     volume = {262},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a10/}
}
TY  - JOUR
AU  - V. A. Rodin
TI  - Hardy and Bellman transformations in spaces close to $L_\infty$ and to~$L_1$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 204
EP  - 213
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a10/
LA  - ru
ID  - ZNSL_1999_262_a10
ER  - 
%0 Journal Article
%A V. A. Rodin
%T Hardy and Bellman transformations in spaces close to $L_\infty$ and to~$L_1$
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 204-213
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a10/
%G ru
%F ZNSL_1999_262_a10
V. A. Rodin. Hardy and Bellman transformations in spaces close to $L_\infty$ and to~$L_1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 204-213. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a10/