The geometry of the Lie algebra of the orthogonal group $O(\mathbb R^4)$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 119-124
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the $6$-dimensional space $\Lambda_2(\mathbb R^4)$ of bivectors a Lie product is introduced analogous to the standard vector product in $\mathbb R^2$. The Lie algebra constructed is proved to be isomorphic to the Lie algebra of the group of orthogonal transformations $O(\mathbb R^4)$. This isomorphism of Lie algebras is
a canonical isometry of the space of antisymmetric operators in $\mathbb R^4$ onto $\Lambda_2(\mathbb R^4)$.
			
            
            
            
          
        
      @article{ZNSL_1999_261_a8,
     author = {S. E. Kozlov and M. Yu. Nikanorova},
     title = {The geometry of the {Lie} algebra of the orthogonal group $O(\mathbb R^4)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {119--124},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a8/}
}
                      
                      
                    TY - JOUR AU - S. E. Kozlov AU - M. Yu. Nikanorova TI - The geometry of the Lie algebra of the orthogonal group $O(\mathbb R^4)$ JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 119 EP - 124 VL - 261 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a8/ LA - ru ID - ZNSL_1999_261_a8 ER -
S. E. Kozlov; M. Yu. Nikanorova. The geometry of the Lie algebra of the orthogonal group $O(\mathbb R^4)$. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 119-124. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a8/