The geometry of the Lie algebra of the orthogonal group $O(\mathbb R^4)$
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 119-124
Cet article a éte moissonné depuis la source Math-Net.Ru
In the $6$-dimensional space $\Lambda_2(\mathbb R^4)$ of bivectors a Lie product is introduced analogous to the standard vector product in $\mathbb R^2$. The Lie algebra constructed is proved to be isomorphic to the Lie algebra of the group of orthogonal transformations $O(\mathbb R^4)$. This isomorphism of Lie algebras is a canonical isometry of the space of antisymmetric operators in $\mathbb R^4$ onto $\Lambda_2(\mathbb R^4)$.
@article{ZNSL_1999_261_a8,
author = {S. E. Kozlov and M. Yu. Nikanorova},
title = {The geometry of the {Lie} algebra of the orthogonal group $O(\mathbb R^4)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {119--124},
year = {1999},
volume = {261},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a8/}
}
S. E. Kozlov; M. Yu. Nikanorova. The geometry of the Lie algebra of the orthogonal group $O(\mathbb R^4)$. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 119-124. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a8/