The geometry of the Lie algebra of the orthogonal group $O(\mathbb R^4)$
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 119-124

Voir la notice de l'article provenant de la source Math-Net.Ru

In the $6$-dimensional space $\Lambda_2(\mathbb R^4)$ of bivectors a Lie product is introduced analogous to the standard vector product in $\mathbb R^2$. The Lie algebra constructed is proved to be isomorphic to the Lie algebra of the group of orthogonal transformations $O(\mathbb R^4)$. This isomorphism of Lie algebras is a canonical isometry of the space of antisymmetric operators in $\mathbb R^4$ onto $\Lambda_2(\mathbb R^4)$.
@article{ZNSL_1999_261_a8,
     author = {S. E. Kozlov and M. Yu. Nikanorova},
     title = {The geometry of the {Lie} algebra of the orthogonal group $O(\mathbb R^4)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {119--124},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a8/}
}
TY  - JOUR
AU  - S. E. Kozlov
AU  - M. Yu. Nikanorova
TI  - The geometry of the Lie algebra of the orthogonal group $O(\mathbb R^4)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 119
EP  - 124
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a8/
LA  - ru
ID  - ZNSL_1999_261_a8
ER  - 
%0 Journal Article
%A S. E. Kozlov
%A M. Yu. Nikanorova
%T The geometry of the Lie algebra of the orthogonal group $O(\mathbb R^4)$
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 119-124
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a8/
%G ru
%F ZNSL_1999_261_a8
S. E. Kozlov; M. Yu. Nikanorova. The geometry of the Lie algebra of the orthogonal group $O(\mathbb R^4)$. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 119-124. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a8/