Stationary values of sectional curvature in Grassmanian manifolds of bivectors
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 102-118

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Grassmanian manifold $G^+_{2,n}$ of bivectors $(n\ge4)$ the curvature $K(\sigma)$ of the section on direction of a flat area $\sigma$ takes values on the range from 0 to 2. All stationary values $a$ of the function $K(\sigma)$ such that the gradient $\nabla K\big|_{\sigma=\sigma_0}=0$ for at least one $\sigma_0\in K^{-1}(a)$ are found. Those values are $\{0,1,2\}$ for $n=4$, $\{0,1/5,1,2\}$ for $n=5$, $\{0,1/5,1/2,1,2\}$ for $n\ge6$.
@article{ZNSL_1999_261_a7,
     author = {S. E. Kozlov},
     title = {Stationary values of sectional curvature in {Grassmanian} manifolds of bivectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--118},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a7/}
}
TY  - JOUR
AU  - S. E. Kozlov
TI  - Stationary values of sectional curvature in Grassmanian manifolds of bivectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 102
EP  - 118
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a7/
LA  - ru
ID  - ZNSL_1999_261_a7
ER  - 
%0 Journal Article
%A S. E. Kozlov
%T Stationary values of sectional curvature in Grassmanian manifolds of bivectors
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 102-118
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a7/
%G ru
%F ZNSL_1999_261_a7
S. E. Kozlov. Stationary values of sectional curvature in Grassmanian manifolds of bivectors. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 102-118. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a7/