On the convex hull of several compacta
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 66-75
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $K_0,K_1,\dots,K_m$ be nonempty compact sets in $\mathbb R^n$. Then the family of convex hulls $\operatorname{conv}\{\bigcup^m_{i=0}(K_i+r_i)\}$, $r_0=0$, is a convex family of sets, parametrized by 
 $\rho=(r_1,\dots,r_m)\in\mathbb R^{nm}$. In case $m=1$, the volume $\operatorname{Vol\,conv}(K_0\cup(K_1+r))$ is a convex function of $r\in\mathbb R^n$.
			
            
            
            
          
        
      @article{ZNSL_1999_261_a5,
     author = {A. V. Evdokimov and V. A. Zalgaller},
     title = {On the convex hull of several compacta},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {66--75},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a5/}
}
                      
                      
                    A. V. Evdokimov; V. A. Zalgaller. On the convex hull of several compacta. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 66-75. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a5/