Geodesics on faces of calibrations of degree two
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 55-65

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that faces of unite spheres equipped with mass and comass norms are totally geodesic submanifolds in the manifolds of the extremal points of the spheres. The canonical embedding of the complex projective space $\mathbb CP^{k-1}$ in the Plücker model of the Grassmanian $G^+_2(\mathbb R^{2k})\subset\Lambda_2(\mathbb R^{2k})$ is described, and certain of its properties are proved. As an application of these results, the two-dimensional sections in $\mathbb CP^{k-1}$ such that the curvature in these sections is minimal are characterized geometrically.
@article{ZNSL_1999_261_a4,
     author = {A. N. Glushakov and S. E. Kozlov},
     title = {Geodesics on faces of calibrations of degree two},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--65},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a4/}
}
TY  - JOUR
AU  - A. N. Glushakov
AU  - S. E. Kozlov
TI  - Geodesics on faces of calibrations of degree two
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 55
EP  - 65
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a4/
LA  - ru
ID  - ZNSL_1999_261_a4
ER  - 
%0 Journal Article
%A A. N. Glushakov
%A S. E. Kozlov
%T Geodesics on faces of calibrations of degree two
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 55-65
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a4/
%G ru
%F ZNSL_1999_261_a4
A. N. Glushakov; S. E. Kozlov. Geodesics on faces of calibrations of degree two. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 55-65. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a4/