The geometry of the sphere of the gauges of degree two
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 43-54
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct a canonical bijection between the set of extremal points of the unit sphere $S^*_{2,2k}\subset\Lambda^2(\mathbb R^{2k})$ (in the norm of cocharge) and the manifold of orthogonal comples
structures in $\mathbb R^{2k}$. Under this bijection the unitary basises correspond to the expansion of the forms which $re$ the conjugate norm of the charge. Using this correspondence we give the classification of $t$ facets of the sphere $S^*_{2,n}$ and the known classification of the facets of the set which is polar
to that sphere.
			
            
            
            
          
        
      @article{ZNSL_1999_261_a3,
     author = {A. N. Glushakov and S. E. Kozlov},
     title = {The geometry of the sphere of the gauges of degree two},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a3/}
}
                      
                      
                    A. N. Glushakov; S. E. Kozlov. The geometry of the sphere of the gauges of degree two. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 43-54. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a3/