The vector space of the conformal Killing forms on a Riemannian manifold
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 240-265

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a conformal Killing $p$-form in a Riemannian manifold of dimension $m>p\ge1$ was introduced by S. Tashibana and T. Kashiwada. They generalized some results of a conformal Killing vector field to a conformal Killing $p$-form. In this paper we define a conformal Killing $p$-form with the help of natural differental operators on Riemannian manifolds and representations of orthogonal groups. Then we consider the vector space $\mathbf T^p(M,\mathbf R)$ of conformal Killing $p$-forms and it's two subspaces $\mathbf K^p(M,\mathbf R)$ of coclosed conformal Killing $p$-forms and $\mathbf P^p(M,\mathbf R)$ of closed conformal Killing $p$-forms. In particular, we generalize some local and global results of Tashibana and Kashiwada about a conformal Killing and Killing $p$-forms. In the end of the paper we give an interesting application to Hermitian geometry.
@article{ZNSL_1999_261_a19,
     author = {S. E. Stepanov},
     title = {The vector space of the conformal {Killing} forms on a {Riemannian} manifold},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {240--265},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a19/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - The vector space of the conformal Killing forms on a Riemannian manifold
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 240
EP  - 265
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a19/
LA  - ru
ID  - ZNSL_1999_261_a19
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T The vector space of the conformal Killing forms on a Riemannian manifold
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 240-265
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a19/
%G ru
%F ZNSL_1999_261_a19
S. E. Stepanov. The vector space of the conformal Killing forms on a Riemannian manifold. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 240-265. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a19/