Homotopy classification of singular links of type $(1,1,m;3)$ with $m>1$
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 229-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Homotopy classification of three-component singular links with components of dimensions 1, 1, and $m>1$ in the three-sphere $S^3$ is obtained. It is shown there are links of such type that are pseudo-homotopic but not homotopic.
@article{ZNSL_1999_261_a18,
     author = {R. F. Sayakhova},
     title = {Homotopy classification of singular links of type $(1,1,m;3)$ with $m>1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {229--239},
     year = {1999},
     volume = {261},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a18/}
}
TY  - JOUR
AU  - R. F. Sayakhova
TI  - Homotopy classification of singular links of type $(1,1,m;3)$ with $m>1$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 229
EP  - 239
VL  - 261
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a18/
LA  - ru
ID  - ZNSL_1999_261_a18
ER  - 
%0 Journal Article
%A R. F. Sayakhova
%T Homotopy classification of singular links of type $(1,1,m;3)$ with $m>1$
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 229-239
%V 261
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a18/
%G ru
%F ZNSL_1999_261_a18
R. F. Sayakhova. Homotopy classification of singular links of type $(1,1,m;3)$ with $m>1$. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 229-239. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a18/