Homotopy classification of singular links of type $(1,1,m;3)$ with $m>1$
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 229-239
Cet article a éte moissonné depuis la source Math-Net.Ru
Homotopy classification of three-component singular links with components of dimensions 1, 1, and $m>1$ in the three-sphere $S^3$ is obtained. It is shown there are links of such type that are pseudo-homotopic but not homotopic.
@article{ZNSL_1999_261_a18,
author = {R. F. Sayakhova},
title = {Homotopy classification of singular links of type $(1,1,m;3)$ with $m>1$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {229--239},
year = {1999},
volume = {261},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a18/}
}
R. F. Sayakhova. Homotopy classification of singular links of type $(1,1,m;3)$ with $m>1$. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 229-239. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a18/