Order of function on the Bruschlinsky group
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 222-228

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary function $F$ defined on the group of homotopy classes of mappings of a finite polyheder $X$ to the circle and taking values in an Abelian group $Q$, the notion of order is defined. The order $\operatorname{ord}F$ is compared with the algebraic degree of $F$. It is proved that $\operatorname{ord} F\le\operatorname{deg}F$ and $\operatorname{deg}F\le\operatorname{dim}X\cdot\operatorname{ord}F$. The inequality $\operatorname{ord}F\ge\operatorname{deg}F$ is proved in the case where $Q$ is torsion-free or $\operatorname{ord}F\le1$.
@article{ZNSL_1999_261_a17,
     author = {S. S. Podkorytov},
     title = {Order of function on the {Bruschlinsky} group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--228},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a17/}
}
TY  - JOUR
AU  - S. S. Podkorytov
TI  - Order of function on the Bruschlinsky group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 222
EP  - 228
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a17/
LA  - ru
ID  - ZNSL_1999_261_a17
ER  - 
%0 Journal Article
%A S. S. Podkorytov
%T Order of function on the Bruschlinsky group
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 222-228
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a17/
%G ru
%F ZNSL_1999_261_a17
S. S. Podkorytov. Order of function on the Bruschlinsky group. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 222-228. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a17/