On the homology of a perturbation of a complex projective hypersurfaces
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 204-209

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonsingular hypersurface $X$ in $\mathbb CP^{n+1}$ with $n\ge3$ are studied. We state a theorem saying that the homology coming from the affine part of a hypersurface of smaller degree forms a durect summand in the homology of $X$, which is independent over integers with the class of the multiple hyperplane section. The proof is outlined.
@article{ZNSL_1999_261_a15,
     author = {N. Yu. Netsvetaev},
     title = {On the homology of a perturbation of a complex projective hypersurfaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {204--209},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a15/}
}
TY  - JOUR
AU  - N. Yu. Netsvetaev
TI  - On the homology of a perturbation of a complex projective hypersurfaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 204
EP  - 209
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a15/
LA  - ru
ID  - ZNSL_1999_261_a15
ER  - 
%0 Journal Article
%A N. Yu. Netsvetaev
%T On the homology of a perturbation of a complex projective hypersurfaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 204-209
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a15/
%G ru
%F ZNSL_1999_261_a15
N. Yu. Netsvetaev. On the homology of a perturbation of a complex projective hypersurfaces. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 204-209. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a15/