On common sections with given properties for finite set of convex compacts
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 198-203
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The  general theorem below is proved.
Theorem. {\it Let $O$ be the interior point for $n-2$ convex compacts $K_1,\dots,K_{n-2}$ in $\mathbb R^n$. There exists such two-dimensional plane $H$, passing through the point $O$, that for $i\le n-2$ some affine image of the given centrally-summetric hexagon is inscribed in $K_i\cap H$ and has the center at point $O$. There exist such $n-3$ two-dimensional planes $H_1,\dots,H_{n-3}$, passing through the point $O$, and laying at the same time in three-dimensional plane, that for $i\le n-3$ some affine image of regular octagon us inscribed in $H_i\cap K_i$ and has the center at point $O$.}
			
            
            
            
          
        
      @article{ZNSL_1999_261_a14,
     author = {V. V. Makeev and A. S. Mukhin},
     title = {On common sections with given properties for finite set of convex compacts},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {198--203},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a14/}
}
                      
                      
                    TY - JOUR AU - V. V. Makeev AU - A. S. Mukhin TI - On common sections with given properties for finite set of convex compacts JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 198 EP - 203 VL - 261 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a14/ LA - ru ID - ZNSL_1999_261_a14 ER -
V. V. Makeev; A. S. Mukhin. On common sections with given properties for finite set of convex compacts. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 198-203. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a14/