On one affine-invariant metric on the class of convex plane compacts
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 194-197
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              Theorem. For every plane convex compacts $K_1,K_2\subset\mathbb R^2$ there exist an affine transformations $T_1$, $T_2$ such that $T_1(K_1)\subset K_2\subset T_2(K_1)$ and $S(T_2(K_1))111/16 S(T_1(K_1))$, where $S(K)$ means the square of a plane set $K\subset\mathbb R^2$.
            
            
            
          
        
      @article{ZNSL_1999_261_a13,
     author = {V. V. Makeev},
     title = {On one affine-invariant metric on the class of convex plane compacts},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {194--197},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a13/}
}
                      
                      
                    V. V. Makeev. On one affine-invariant metric on the class of convex plane compacts. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 194-197. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a13/