On isometric immersion of closed manifolds of nonnegative curvature
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 187-193

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M^n$ be a closed manifold. Assume that an immersion $f\colon M^n\to\mathbb R^N$ induces a $C^2$-smooth metric of nonnegative curvature or a polyhedral metric of nonnegative curvature on $M^n$. If this nonnegativness is left invariant under every affine transformation of $\mathbb R^N$, then $f$ is an embedding on the boundary of a $C^2$-smooth convex body (a convex polyhedron correspondingly) in some $\mathbb R^{n+1}\subset\mathbb R^N$.
@article{ZNSL_1999_261_a12,
     author = {N. D. Lebedeva},
     title = {On isometric immersion of closed manifolds of nonnegative curvature},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--193},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a12/}
}
TY  - JOUR
AU  - N. D. Lebedeva
TI  - On isometric immersion of closed manifolds of nonnegative curvature
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 187
EP  - 193
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a12/
LA  - ru
ID  - ZNSL_1999_261_a12
ER  - 
%0 Journal Article
%A N. D. Lebedeva
%T On isometric immersion of closed manifolds of nonnegative curvature
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 187-193
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a12/
%G ru
%F ZNSL_1999_261_a12
N. D. Lebedeva. On isometric immersion of closed manifolds of nonnegative curvature. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 187-193. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a12/