Inversive invariant of a pair of circles
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 167-186

Voir la notice de l'article provenant de la source Math-Net.Ru

An inversive invariant of two oriented circles is introduced. Being close to Coxeter's inversive distance between two non-intersecting circles, it is defined for any pair of oriented circles (straight lines). To demonstrate its effectiveness, two topics are discussed the problem of $C^1$-conjunction of circles and the properties of plane curves with monotonous curvature.
@article{ZNSL_1999_261_a11,
     author = {A. I. Kurnosenko},
     title = {Inversive invariant of a pair of circles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--186},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a11/}
}
TY  - JOUR
AU  - A. I. Kurnosenko
TI  - Inversive invariant of a pair of circles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 167
EP  - 186
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a11/
LA  - ru
ID  - ZNSL_1999_261_a11
ER  - 
%0 Journal Article
%A A. I. Kurnosenko
%T Inversive invariant of a pair of circles
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 167-186
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a11/
%G ru
%F ZNSL_1999_261_a11
A. I. Kurnosenko. Inversive invariant of a pair of circles. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 167-186. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a11/