Inversive invariant of a pair of circles
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 167-186
Cet article a éte moissonné depuis la source Math-Net.Ru
An inversive invariant of two oriented circles is introduced. Being close to Coxeter's inversive distance between two non-intersecting circles, it is defined for any pair of oriented circles (straight lines). To demonstrate its effectiveness, two topics are discussed the problem of $C^1$-conjunction of circles and the properties of plane curves with monotonous curvature.
@article{ZNSL_1999_261_a11,
author = {A. I. Kurnosenko},
title = {Inversive invariant of a pair of circles},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {167--186},
year = {1999},
volume = {261},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a11/}
}
A. I. Kurnosenko. Inversive invariant of a pair of circles. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 167-186. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a11/