Inversive invariant of a pair of circles
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 167-186
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An inversive invariant of two oriented circles is introduced. Being close to Coxeter's inversive distance
between two non-intersecting circles, it is defined for any pair of oriented circles (straight lines). To demonstrate
its effectiveness, two topics are discussed the problem of $C^1$-conjunction of circles and the properties of plane curves with monotonous curvature.
			
            
            
            
          
        
      @article{ZNSL_1999_261_a11,
     author = {A. I. Kurnosenko},
     title = {Inversive invariant of a pair of circles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--186},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a11/}
}
                      
                      
                    A. I. Kurnosenko. Inversive invariant of a pair of circles. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 167-186. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a11/