Power invariants of certain point sets
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 7-30
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider point sets $A_1,\dots,A_n$ in the space $\mathbb R^d$, $d\ge2$, which have center of gravity at zero and, for a certain set of even exponents $2,4,\dots,2p$, “power invariants” $I_k$ in the following sense. For the sphere $S^{d-1}(R)$ with center at zero and radius $R$ and for a point $M\in S^{d-1}(R)$, the sum $I_k(M)=\sum^n_{i=1}|MA_i|^{2k}$ does not depend on the position of $M$ on the sphere $S^{d-1}(R)$ for $k=1,\dots,p$.
			
            
            
            
          
        
      @article{ZNSL_1999_261_a0,
     author = {Yu. I. Babenko and V. A. Zalgaller},
     title = {Power invariants of certain point sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--30},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a0/}
}
                      
                      
                    Yu. I. Babenko; V. A. Zalgaller. Power invariants of certain point sets. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 7-30. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a0/