Power invariants of certain point sets
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 7-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider point sets $A_1,\dots,A_n$ in the space $\mathbb R^d$, $d\ge2$, which have center of gravity at zero and, for a certain set of even exponents $2,4,\dots,2p$, “power invariants” $I_k$ in the following sense. For the sphere $S^{d-1}(R)$ with center at zero and radius $R$ and for a point $M\in S^{d-1}(R)$, the sum $I_k(M)=\sum^n_{i=1}|MA_i|^{2k}$ does not depend on the position of $M$ on the sphere $S^{d-1}(R)$ for $k=1,\dots,p$.
@article{ZNSL_1999_261_a0,
     author = {Yu. I. Babenko and V. A. Zalgaller},
     title = {Power invariants of certain point sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--30},
     publisher = {mathdoc},
     volume = {261},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a0/}
}
TY  - JOUR
AU  - Yu. I. Babenko
AU  - V. A. Zalgaller
TI  - Power invariants of certain point sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 7
EP  - 30
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a0/
LA  - ru
ID  - ZNSL_1999_261_a0
ER  - 
%0 Journal Article
%A Yu. I. Babenko
%A V. A. Zalgaller
%T Power invariants of certain point sets
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 7-30
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a0/
%G ru
%F ZNSL_1999_261_a0
Yu. I. Babenko; V. A. Zalgaller. Power invariants of certain point sets. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 4, Tome 261 (1999), pp. 7-30. http://geodesic.mathdoc.fr/item/ZNSL_1999_261_a0/