Rates of convergence for a class of rank tests for independence
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 155-163
Voir la notice de l'article provenant de la source Math-Net.Ru
Almost optimal rate of convergence result is obtained for a large class of rank statistics for testing independence including the Gini's and Spearman's rank correlation coefficients as well as the Spearman's footrule.
@article{ZNSL_1999_260_a9,
author = {P. L. Conti and Ya. Yu. Nikitin},
title = {Rates of convergence for a class of rank tests for independence},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {155--163},
publisher = {mathdoc},
volume = {260},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a9/}
}
P. L. Conti; Ya. Yu. Nikitin. Rates of convergence for a class of rank tests for independence. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 155-163. http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a9/