Rates of convergence for a class of rank tests for independence
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 155-163

Voir la notice de l'article provenant de la source Math-Net.Ru

Almost optimal rate of convergence result is obtained for a large class of rank statistics for testing independence including the Gini's and Spearman's rank correlation coefficients as well as the Spearman's footrule.
@article{ZNSL_1999_260_a9,
     author = {P. L. Conti and Ya. Yu. Nikitin},
     title = {Rates of convergence for a class of rank tests for independence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {155--163},
     publisher = {mathdoc},
     volume = {260},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a9/}
}
TY  - JOUR
AU  - P. L. Conti
AU  - Ya. Yu. Nikitin
TI  - Rates of convergence for a class of rank tests for independence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 155
EP  - 163
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a9/
LA  - en
ID  - ZNSL_1999_260_a9
ER  - 
%0 Journal Article
%A P. L. Conti
%A Ya. Yu. Nikitin
%T Rates of convergence for a class of rank tests for independence
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 155-163
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a9/
%G en
%F ZNSL_1999_260_a9
P. L. Conti; Ya. Yu. Nikitin. Rates of convergence for a class of rank tests for independence. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 155-163. http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a9/