Double extensions of dynamical systems and a construction of mixing filtrations.~II. Quasihyperbolic
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 103-118
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T$ be an automorphism (an invertible measure preserving transformation) of a probability space $(X,\mathscr F,\mu)$ and let $U$ be a unitary operator on $L_2(X)=L_2(X,\mathscr F,\mu)$ defined by $Uf=f\circ T$. Let $A_s$ and $A_u$ be generators of symmetric Markov transition semigroups acting on $L_2$. $A_s$ and $A_u$ are supposed to satisfy the relations
$$
U^{-1} A_s U=\theta^{-1} A_s,U^{-1} A_u U=\theta A_u
$$
for some $\theta >1$. A nonnegative selfadjoint operator $A$ on $L_2$ with the properties $ UA=AU$, $ A_u+A_s\ge A$ is said to be a $T$-invariant minorant for $(A_u, A_s)$. Supposing that $A_u$ and $A_s$ commute, certain assumptions on a function $f \in L_2$ in terms of such a minorant are proposed under
which the sequence $(f\circ T^k,k\in\mathbb Z)$ satisfies the functional form of the Central Limit Theorem and the Law of the Iterated Logarithm. A special case of these assumptions was considered in an earlier paper
by the author. Quasihyperbolic toral automorphisms are considered as an application.
@article{ZNSL_1999_260_a6,
author = {M. I. Gordin},
title = {Double extensions of dynamical systems and a construction of mixing {filtrations.~II.} {Quasihyperbolic}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {103--118},
publisher = {mathdoc},
volume = {260},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a6/}
}
TY - JOUR AU - M. I. Gordin TI - Double extensions of dynamical systems and a construction of mixing filtrations.~II. Quasihyperbolic JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 103 EP - 118 VL - 260 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a6/ LA - ru ID - ZNSL_1999_260_a6 ER -
M. I. Gordin. Double extensions of dynamical systems and a construction of mixing filtrations.~II. Quasihyperbolic. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 103-118. http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a6/