Double extensions of dynamical systems and a construction of mixing filtrations.~II. Quasihyperbolic
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 103-118

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be an automorphism (an invertible measure preserving transformation) of a probability space $(X,\mathscr F,\mu)$ and let $U$ be a unitary operator on $L_2(X)=L_2(X,\mathscr F,\mu)$ defined by $Uf=f\circ T$. Let $A_s$ and $A_u$ be generators of symmetric Markov transition semigroups acting on $L_2$. $A_s$ and $A_u$ are supposed to satisfy the relations $$ U^{-1} A_s U=\theta^{-1} A_s,U^{-1} A_u U=\theta A_u $$ for some $\theta >1$. A nonnegative selfadjoint operator $A$ on $L_2$ with the properties $ UA=AU$, $ A_u+A_s\ge A$ is said to be a $T$-invariant minorant for $(A_u, A_s)$. Supposing that $A_u$ and $A_s$ commute, certain assumptions on a function $f \in L_2$ in terms of such a minorant are proposed under which the sequence $(f\circ T^k,k\in\mathbb Z)$ satisfies the functional form of the Central Limit Theorem and the Law of the Iterated Logarithm. A special case of these assumptions was considered in an earlier paper by the author. Quasihyperbolic toral automorphisms are considered as an application.
@article{ZNSL_1999_260_a6,
     author = {M. I. Gordin},
     title = {Double extensions of dynamical systems and a construction of mixing {filtrations.~II.} {Quasihyperbolic}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--118},
     publisher = {mathdoc},
     volume = {260},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a6/}
}
TY  - JOUR
AU  - M. I. Gordin
TI  - Double extensions of dynamical systems and a construction of mixing filtrations.~II. Quasihyperbolic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 103
EP  - 118
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a6/
LA  - ru
ID  - ZNSL_1999_260_a6
ER  - 
%0 Journal Article
%A M. I. Gordin
%T Double extensions of dynamical systems and a construction of mixing filtrations.~II. Quasihyperbolic
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 103-118
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a6/
%G ru
%F ZNSL_1999_260_a6
M. I. Gordin. Double extensions of dynamical systems and a construction of mixing filtrations.~II. Quasihyperbolic. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 103-118. http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a6/