Prediction problems and Hunt--Muckenhoupt--Wheeden condition
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 73-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x[{\cdot}]$ be a process stationary in the wide sense and having spectral density $f$. We find conditions (formulated in spectral terms) under which a construction of an asymptotically optimal (in a proper sense) prediction is stable with respect to deformations of the spectral density $f$.
@article{ZNSL_1999_260_a4,
     author = {V. N. Solev and Ch. Bulot},
     title = {Prediction problems and {Hunt--Muckenhoupt--Wheeden} condition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--83},
     publisher = {mathdoc},
     volume = {260},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a4/}
}
TY  - JOUR
AU  - V. N. Solev
AU  - Ch. Bulot
TI  - Prediction problems and Hunt--Muckenhoupt--Wheeden condition
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 73
EP  - 83
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a4/
LA  - en
ID  - ZNSL_1999_260_a4
ER  - 
%0 Journal Article
%A V. N. Solev
%A Ch. Bulot
%T Prediction problems and Hunt--Muckenhoupt--Wheeden condition
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 73-83
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a4/
%G en
%F ZNSL_1999_260_a4
V. N. Solev; Ch. Bulot. Prediction problems and Hunt--Muckenhoupt--Wheeden condition. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 73-83. http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a4/