The Selberg $Z$-function. A~local approach
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 298-316

Voir la notice de l'article provenant de la source Math-Net.Ru

A local version of the Selberg $Z$-function is used in order to extend it analitically and to prove some estimates in the critical band.
@article{ZNSL_1999_260_a21,
     author = {A. I. Vinogradov},
     title = {The {Selberg} $Z$-function. {A~local} approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {298--316},
     publisher = {mathdoc},
     volume = {260},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a21/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - The Selberg $Z$-function. A~local approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 298
EP  - 316
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a21/
LA  - ru
ID  - ZNSL_1999_260_a21
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T The Selberg $Z$-function. A~local approach
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 298-316
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a21/
%G ru
%F ZNSL_1999_260_a21
A. I. Vinogradov. The Selberg $Z$-function. A~local approach. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 298-316. http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a21/