Smooth diffusion measures and their transformations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 31-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study absolutely continuous transformations of smooth diffusion measures and describe the generalized Darboux transformation. Besides we reveal the connections between some quasilinear classical equations like Burgers or Riccati equations and their generalizations with equations which govern logarithmic derivatives of smooth diffusion measures. The results derived here combined with the ground state representation could be applied to compute functional integrals.
@article{ZNSL_1999_260_a2,
     author = {Ya. I. Belopol'skaya},
     title = {Smooth diffusion measures and their transformations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--49},
     year = {1999},
     volume = {260},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a2/}
}
TY  - JOUR
AU  - Ya. I. Belopol'skaya
TI  - Smooth diffusion measures and their transformations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 31
EP  - 49
VL  - 260
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a2/
LA  - ru
ID  - ZNSL_1999_260_a2
ER  - 
%0 Journal Article
%A Ya. I. Belopol'skaya
%T Smooth diffusion measures and their transformations
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 31-49
%V 260
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a2/
%G ru
%F ZNSL_1999_260_a2
Ya. I. Belopol'skaya. Smooth diffusion measures and their transformations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 31-49. http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a2/