A counterexample to the conjecture on monotonicity of an integral with respect to Gaussian measure
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 250-257

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for the Kantorovich metrics $\varkappa$ on probability measures for centered Gaussian measures $\gamma$ defined on Euclidean space $E$ of random variables $X$ the integral $$ I(\gamma)=\iint\limits_{E\oplus E}\varkappa(\mathscr L(X_1),\mathscr L(X_2))(\gamma\otimes\gamma)\,d(X_1,X_2), $$ is not always monotonic in $\gamma$.
@article{ZNSL_1999_260_a16,
     author = {A. V. Sudakov},
     title = {A counterexample to the conjecture on monotonicity of an integral with respect to {Gaussian} measure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {250--257},
     publisher = {mathdoc},
     volume = {260},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a16/}
}
TY  - JOUR
AU  - A. V. Sudakov
TI  - A counterexample to the conjecture on monotonicity of an integral with respect to Gaussian measure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 250
EP  - 257
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a16/
LA  - ru
ID  - ZNSL_1999_260_a16
ER  - 
%0 Journal Article
%A A. V. Sudakov
%T A counterexample to the conjecture on monotonicity of an integral with respect to Gaussian measure
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 250-257
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a16/
%G ru
%F ZNSL_1999_260_a16
A. V. Sudakov. A counterexample to the conjecture on monotonicity of an integral with respect to Gaussian measure. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 250-257. http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a16/