An estimate of the integral of the module of a generalized Poisson distribution characteristic function in a small length interval
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 240-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the note new estimates for the integrals of generalized Poisson distribution characteristic function in intervals of sufficient small length are obtained. The typical applications of such estimates are the following: the evaluation of a convergence rate of moments in the CLT, estimates of concentration functions, local limit theorems.
@article{ZNSL_1999_260_a15,
     author = {L. V. Rozovskii},
     title = {An estimate of the integral of the module of a generalized {Poisson} distribution characteristic function in a small length interval},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {240--249},
     year = {1999},
     volume = {260},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a15/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - An estimate of the integral of the module of a generalized Poisson distribution characteristic function in a small length interval
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 240
EP  - 249
VL  - 260
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a15/
LA  - ru
ID  - ZNSL_1999_260_a15
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T An estimate of the integral of the module of a generalized Poisson distribution characteristic function in a small length interval
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 240-249
%V 260
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a15/
%G ru
%F ZNSL_1999_260_a15
L. V. Rozovskii. An estimate of the integral of the module of a generalized Poisson distribution characteristic function in a small length interval. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 240-249. http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a15/