An expansion of multilpe Stratonovich stochastic integrals, based on multiple Fourier expansion
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 164-185
Voir la notice de l'article provenant de la source Math-Net.Ru
The expansion of multiple Stratonovich stochastic integrals of multiplicity $k$; $k\in N$ into multiple series of
products of Gaussian random values is stated and proved. The coefficients of this expansion are the coefficients
of multiple Fourier expansion of the function of several variables on full orthonormal systems in space $L_2([t,T])$. For expansion the convergence in mean of order $n$; $n\in N$ is proved. Some expansions of multiple Stratonovich stochastic integrals with the help of polynomial and trigonometric systems are considered.
@article{ZNSL_1999_260_a10,
author = {D. F. Kuznetsov},
title = {An expansion of multilpe {Stratonovich} stochastic integrals, based on multiple {Fourier} expansion},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {164--185},
publisher = {mathdoc},
volume = {260},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a10/}
}
TY - JOUR AU - D. F. Kuznetsov TI - An expansion of multilpe Stratonovich stochastic integrals, based on multiple Fourier expansion JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 164 EP - 185 VL - 260 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a10/ LA - ru ID - ZNSL_1999_260_a10 ER -
D. F. Kuznetsov. An expansion of multilpe Stratonovich stochastic integrals, based on multiple Fourier expansion. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 164-185. http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a10/