An expansion of multilpe Stratonovich stochastic integrals, based on multiple Fourier expansion
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 164-185

Voir la notice de l'article provenant de la source Math-Net.Ru

The expansion of multiple Stratonovich stochastic integrals of multiplicity $k$; $k\in N$ into multiple series of products of Gaussian random values is stated and proved. The coefficients of this expansion are the coefficients of multiple Fourier expansion of the function of several variables on full orthonormal systems in space $L_2([t,T])$. For expansion the convergence in mean of order $n$; $n\in N$ is proved. Some expansions of multiple Stratonovich stochastic integrals with the help of polynomial and trigonometric systems are considered.
@article{ZNSL_1999_260_a10,
     author = {D. F. Kuznetsov},
     title = {An expansion of multilpe {Stratonovich} stochastic integrals, based on multiple {Fourier} expansion},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {164--185},
     publisher = {mathdoc},
     volume = {260},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a10/}
}
TY  - JOUR
AU  - D. F. Kuznetsov
TI  - An expansion of multilpe Stratonovich stochastic integrals, based on multiple Fourier expansion
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 164
EP  - 185
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a10/
LA  - ru
ID  - ZNSL_1999_260_a10
ER  - 
%0 Journal Article
%A D. F. Kuznetsov
%T An expansion of multilpe Stratonovich stochastic integrals, based on multiple Fourier expansion
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 164-185
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a10/
%G ru
%F ZNSL_1999_260_a10
D. F. Kuznetsov. An expansion of multilpe Stratonovich stochastic integrals, based on multiple Fourier expansion. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 3, Tome 260 (1999), pp. 164-185. http://geodesic.mathdoc.fr/item/ZNSL_1999_260_a10/