Difraction on a cone: the asymptotics of the solutions near the vertex
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 122-144
Voir la notice de l'article provenant de la source Math-Net.Ru
The mixed problem for the wave equation in a cone $K\subset\mathbb R^n$ is considered. We obtain the asymptotic formulas for the solutions and the Green function near the vertex of the $K$. The properties of the coefficients in the asymptotics connected with the finiteness of the propagation speed are clarified.
@article{ZNSL_1999_259_a5,
author = {A. Yu. Kokotov and P. Neittaanm\"aki and B. A. Plamenevskii},
title = {Difraction on a cone: the asymptotics of the solutions near the vertex},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {122--144},
publisher = {mathdoc},
volume = {259},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a5/}
}
TY - JOUR AU - A. Yu. Kokotov AU - P. Neittaanmäki AU - B. A. Plamenevskii TI - Difraction on a cone: the asymptotics of the solutions near the vertex JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 122 EP - 144 VL - 259 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a5/ LA - ru ID - ZNSL_1999_259_a5 ER -
%0 Journal Article %A A. Yu. Kokotov %A P. Neittaanmäki %A B. A. Plamenevskii %T Difraction on a cone: the asymptotics of the solutions near the vertex %J Zapiski Nauchnykh Seminarov POMI %D 1999 %P 122-144 %V 259 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a5/ %G ru %F ZNSL_1999_259_a5
A. Yu. Kokotov; P. Neittaanmäki; B. A. Plamenevskii. Difraction on a cone: the asymptotics of the solutions near the vertex. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 122-144. http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a5/