Difraction on a cone: the asymptotics of the solutions near the vertex
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 122-144

Voir la notice de l'article provenant de la source Math-Net.Ru

The mixed problem for the wave equation in a cone $K\subset\mathbb R^n$ is considered. We obtain the asymptotic formulas for the solutions and the Green function near the vertex of the $K$. The properties of the coefficients in the asymptotics connected with the finiteness of the propagation speed are clarified.
@article{ZNSL_1999_259_a5,
     author = {A. Yu. Kokotov and P. Neittaanm\"aki and B. A. Plamenevskii},
     title = {Difraction on a cone: the asymptotics of the solutions near the vertex},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--144},
     publisher = {mathdoc},
     volume = {259},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a5/}
}
TY  - JOUR
AU  - A. Yu. Kokotov
AU  - P. Neittaanmäki
AU  - B. A. Plamenevskii
TI  - Difraction on a cone: the asymptotics of the solutions near the vertex
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 122
EP  - 144
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a5/
LA  - ru
ID  - ZNSL_1999_259_a5
ER  - 
%0 Journal Article
%A A. Yu. Kokotov
%A P. Neittaanmäki
%A B. A. Plamenevskii
%T Difraction on a cone: the asymptotics of the solutions near the vertex
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 122-144
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a5/
%G ru
%F ZNSL_1999_259_a5
A. Yu. Kokotov; P. Neittaanmäki; B. A. Plamenevskii. Difraction on a cone: the asymptotics of the solutions near the vertex. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 122-144. http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a5/