Existence and uniqueness of a weak solution to the initial mixt boundary value problem for quasilinear
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 67-88

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence and the uniqueness of a weak solution to the mixed boundary problem for the elliptic-parabolic equation \begin{gather*} \partial_tb(u)-\operatorname{div}\{|\sigma(u)|^{m-2}\sigma(u)\}=f(x,t), \\ \delta(u):=\nabla u+k(b(u))\vec e, \qquad |\vec e|=1, \enskip m>1, \end{gather*} with a monotone nondecreasing continuous function $b$. Such equations arise in the theory of non-Newtonian filtration as well as in the mathematical glaciology.
@article{ZNSL_1999_259_a3,
     author = {A. V. Ivanov and J.-F. Rodrigues},
     title = {Existence and uniqueness of a weak solution to the initial mixt boundary value problem for quasilinear},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--88},
     publisher = {mathdoc},
     volume = {259},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a3/}
}
TY  - JOUR
AU  - A. V. Ivanov
AU  - J.-F. Rodrigues
TI  - Existence and uniqueness of a weak solution to the initial mixt boundary value problem for quasilinear
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 67
EP  - 88
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a3/
LA  - en
ID  - ZNSL_1999_259_a3
ER  - 
%0 Journal Article
%A A. V. Ivanov
%A J.-F. Rodrigues
%T Existence and uniqueness of a weak solution to the initial mixt boundary value problem for quasilinear
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 67-88
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a3/
%G en
%F ZNSL_1999_259_a3
A. V. Ivanov; J.-F. Rodrigues. Existence and uniqueness of a weak solution to the initial mixt boundary value problem for quasilinear. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 67-88. http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a3/