Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 46-66

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimum problem $\int_{\Omega}f(\nabla u)dx\longrightarrow\min$ among mappings $u:\mathbb R^n\supset\Omega\to\mathbb R^N$ with prescribed Dirichlet boundary data and for integrands $f$ of linear growth in general fails to have solutions in the Sobolev space $W^1_1$. We therefore concentrate on the dual variational problem which admits a unique maximizer $\sigma$ and prove partial Hölder continuity of $\sigma$. Moreover, we study smoothness properties of $L^1$-limits of minimizing sequences of the original problem.
@article{ZNSL_1999_259_a2,
     author = {M. Fuchs and M. Bildhauer},
     title = {Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {46--66},
     publisher = {mathdoc},
     volume = {259},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a2/}
}
TY  - JOUR
AU  - M. Fuchs
AU  - M. Bildhauer
TI  - Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 46
EP  - 66
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a2/
LA  - en
ID  - ZNSL_1999_259_a2
ER  - 
%0 Journal Article
%A M. Fuchs
%A M. Bildhauer
%T Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 46-66
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a2/
%G en
%F ZNSL_1999_259_a2
M. Fuchs; M. Bildhauer. Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 46-66. http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a2/