Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 46-66
Voir la notice de l'article provenant de la source Math-Net.Ru
The minimum problem $\int_{\Omega}f(\nabla u)dx\longrightarrow\min$ among mappings $u:\mathbb R^n\supset\Omega\to\mathbb R^N$ with prescribed Dirichlet boundary data and for integrands $f$ of linear growth in general fails to have solutions in the Sobolev space $W^1_1$. We therefore concentrate
on the dual variational problem which admits a unique maximizer $\sigma$ and prove partial Hölder continuity of $\sigma$. Moreover, we study smoothness properties of $L^1$-limits of minimizing sequences of the original problem.
@article{ZNSL_1999_259_a2,
author = {M. Fuchs and M. Bildhauer},
title = {Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {46--66},
publisher = {mathdoc},
volume = {259},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a2/}
}
TY - JOUR AU - M. Fuchs AU - M. Bildhauer TI - Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 46 EP - 66 VL - 259 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a2/ LA - en ID - ZNSL_1999_259_a2 ER -
%0 Journal Article %A M. Fuchs %A M. Bildhauer %T Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth %J Zapiski Nauchnykh Seminarov POMI %D 1999 %P 46-66 %V 259 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a2/ %G en %F ZNSL_1999_259_a2
M. Fuchs; M. Bildhauer. Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 46-66. http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a2/