Partial regularity for solutions to the modified Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 238-253

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial-boundary value problem for the modified Navier–Stokes equations is considered in the case of the homogeneous Dirichlet boundary conditions. Under some assumptions partial regularity for its solution is proved. It is shown that Hausdorff's dimension of the set of singular points is not greater than three.
@article{ZNSL_1999_259_a11,
     author = {G. A. Seregin},
     title = {Partial regularity for solutions to the modified {Navier--Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {238--253},
     publisher = {mathdoc},
     volume = {259},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a11/}
}
TY  - JOUR
AU  - G. A. Seregin
TI  - Partial regularity for solutions to the modified Navier--Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 238
EP  - 253
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a11/
LA  - en
ID  - ZNSL_1999_259_a11
ER  - 
%0 Journal Article
%A G. A. Seregin
%T Partial regularity for solutions to the modified Navier--Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 238-253
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a11/
%G en
%F ZNSL_1999_259_a11
G. A. Seregin. Partial regularity for solutions to the modified Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 238-253. http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a11/