Partial regularity for solutions to the modified Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 238-253
Voir la notice de l'article provenant de la source Math-Net.Ru
The initial-boundary value problem for the modified Navier–Stokes equations is considered in the case of the homogeneous Dirichlet boundary conditions. Under some assumptions partial regularity for its solution is proved. It is shown that Hausdorff's dimension of the set of singular points is not greater than three.
@article{ZNSL_1999_259_a11,
author = {G. A. Seregin},
title = {Partial regularity for solutions to the modified {Navier--Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {238--253},
publisher = {mathdoc},
volume = {259},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a11/}
}
G. A. Seregin. Partial regularity for solutions to the modified Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Tome 259 (1999), pp. 238-253. http://geodesic.mathdoc.fr/item/ZNSL_1999_259_a11/