Parcourir par
Revues
Séminaires
Livres
Congrès
Sources
Geodesic
Parcourir par
Revues
Séminaires
Livres
Congrès
Sources
Zapiski Nauchnykh Seminarov POMI
Tome 259 (1999)
Précédent
Suivant
Boundary-value problems of mathematical physics and related problems of function theory. Part 30
Sommaire
On a modification of Gehring lemma
A. A. Arkhipova
;
O. A. Ladyzhenskaya
p. 7-18
Characterization of data in the dynamical inverse problem for two-velocity system
M. I. Belishev
;
S. A. Ivanov
p. 19-45
Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth
M. Fuchs
;
M. Bildhauer
p. 46-66
Existence and uniqueness of a weak solution to the initial mixt boundary value problem for quasilinear
A. V. Ivanov
;
J.-F. Rodrigues
p. 67-88
$C^{1,\alpha}$
-solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem
P. Kaplitský
;
J. Málek
;
J. Stará
p. 89-121
Difraction on a cone: the asymptotics of the solutions near the vertex
A. Yu. Kokotov
;
P. Neittaanmäki
;
B. A. Plamenevskii
p. 122-144
On reqularity of solutions to two-dimensional equations of the dynamics of fluids with nonlinear viscosity
O. A. Ladyzhenskaya
;
G. A. Seregin
p. 145-166
About ``one-dimensionality'' of the extremal in the Poincare inequality in the square
A. I. Nazarov
p. 167-181
Matching of two modes of the registration of surface energy for a problem about phase transitions in a thermoelasticity
V. G. Osmolovskii
p. 182-194
A posteriori estimates for the Stokes problem
S. I. Repin
p. 195-211
Local structure of generalized elliptic pseudodifferential operators and method of Gauss
R. S. Saks
p. 212-237
Partial regularity for solutions to the modified Navier--Stokes equations
G. A. Seregin
p. 238-253
Estimates of solutions of the second initial-boundary problem for the Stokes system in the spaces of functions with H\"older continuous derivatives with respect to spatial variables
V. A. Solonnikov
p. 254-279
$L_p$
-estimates of a solution of the model Verigin problem
E. V. Frolova
p. 280-295