Algorithms in algebraic topology and homological algebra: the problem of the complexity
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Tome 258 (1999), pp. 161-184
Cet article a éte moissonné depuis la source Math-Net.Ru
This survey tackles the problem of the high computational complexity lying in most of the algorithms in Algebraic Topology and Homological Algebra. We deal with three particular algorithms: the computation of the homology of commutative differential graded algebras, the homology of principal twisted cartesian products of Eilenberg–Mac Lane spaces and a combinatorial method computing Steenrod Squares.
@article{ZNSL_1999_258_a8,
author = {P. R. Hurado and V. \'Alvarez and J. A. Armario and R. Gons\'ales-D{\'\i}as},
title = {Algorithms in algebraic topology and homological algebra: the problem of the complexity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {161--184},
year = {1999},
volume = {258},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a8/}
}
TY - JOUR AU - P. R. Hurado AU - V. Álvarez AU - J. A. Armario AU - R. Gonsáles-Días TI - Algorithms in algebraic topology and homological algebra: the problem of the complexity JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 161 EP - 184 VL - 258 UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a8/ LA - en ID - ZNSL_1999_258_a8 ER -
%0 Journal Article %A P. R. Hurado %A V. Álvarez %A J. A. Armario %A R. Gonsáles-Días %T Algorithms in algebraic topology and homological algebra: the problem of the complexity %J Zapiski Nauchnykh Seminarov POMI %D 1999 %P 161-184 %V 258 %U http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a8/ %G en %F ZNSL_1999_258_a8
P. R. Hurado; V. Álvarez; J. A. Armario; R. Gonsáles-Días. Algorithms in algebraic topology and homological algebra: the problem of the complexity. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Tome 258 (1999), pp. 161-184. http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a8/