Central Configurations of the 5-body problem with equal masses in three-dimensional space
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Tome 258 (1999), pp. 292-317
Cet article a éte moissonné depuis la source Math-Net.Ru
We enumerate central configurations with axial symmetry in the 5-body problem with equal masses in three-dimensional space. It is thus shown, that only two of these configurations, have a unique symmetry axis. The use of Symbolic Computation techniques is necessary because of the very tedious computations involved in the proof.
@article{ZNSL_1999_258_a15,
author = {I. Kotsireas and D. Lazard},
title = {Central {Configurations} of the 5-body problem with equal masses in three-dimensional space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {292--317},
year = {1999},
volume = {258},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a15/}
}
TY - JOUR AU - I. Kotsireas AU - D. Lazard TI - Central Configurations of the 5-body problem with equal masses in three-dimensional space JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 292 EP - 317 VL - 258 UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a15/ LA - en ID - ZNSL_1999_258_a15 ER -
I. Kotsireas; D. Lazard. Central Configurations of the 5-body problem with equal masses in three-dimensional space. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Tome 258 (1999), pp. 292-317. http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a15/