Problems of stability of dynamic systems and computer algebra
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Tome 258 (1999), pp. 262-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper presents examples of some problems of stability of motion, for solving which computer algebra systems (CAS) have been used. We have experience of developing and applying problem-oriented systems of symbolic computations and applied software packages in solving problems of dynamics of multi-body systems [1, 2]. The algorithms under consideration are implemented completely or partially with the aid of state-of-the-art CAS. They are intended for inclusion in the package of symbolic computation “Stability” [2].
@article{ZNSL_1999_258_a13,
     author = {A. V. Banshchikov and L. A. Burlakova and V. D. Irtegov},
     title = {Problems of stability of dynamic systems and computer algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {262--279},
     year = {1999},
     volume = {258},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/}
}
TY  - JOUR
AU  - A. V. Banshchikov
AU  - L. A. Burlakova
AU  - V. D. Irtegov
TI  - Problems of stability of dynamic systems and computer algebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 262
EP  - 279
VL  - 258
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/
LA  - en
ID  - ZNSL_1999_258_a13
ER  - 
%0 Journal Article
%A A. V. Banshchikov
%A L. A. Burlakova
%A V. D. Irtegov
%T Problems of stability of dynamic systems and computer algebra
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 262-279
%V 258
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/
%G en
%F ZNSL_1999_258_a13
A. V. Banshchikov; L. A. Burlakova; V. D. Irtegov. Problems of stability of dynamic systems and computer algebra. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Tome 258 (1999), pp. 262-279. http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/