Problems of stability of dynamic systems and computer algebra
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Tome 258 (1999), pp. 262-279
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper presents examples of some problems of stability of motion, for solving which computer algebra systems (CAS) have been used. We have experience of developing and applying problem-oriented systems of symbolic computations and applied software packages in solving problems of dynamics of multi-body systems [1, 2]. The algorithms under consideration are implemented completely or partially with the aid of state-of-the-art CAS. They are intended for inclusion in the package of symbolic computation “Stability” [2].
@article{ZNSL_1999_258_a13,
author = {A. V. Banshchikov and L. A. Burlakova and V. D. Irtegov},
title = {Problems of stability of dynamic systems and computer algebra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {262--279},
year = {1999},
volume = {258},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/}
}
TY - JOUR AU - A. V. Banshchikov AU - L. A. Burlakova AU - V. D. Irtegov TI - Problems of stability of dynamic systems and computer algebra JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 262 EP - 279 VL - 258 UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/ LA - en ID - ZNSL_1999_258_a13 ER -
A. V. Banshchikov; L. A. Burlakova; V. D. Irtegov. Problems of stability of dynamic systems and computer algebra. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Tome 258 (1999), pp. 262-279. http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/