Problems of stability of dynamic systems and computer algebra
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Tome 258 (1999), pp. 262-279

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents examples of some problems of stability of motion, for solving which computer algebra systems (CAS) have been used. We have experience of developing and applying problem-oriented systems of symbolic computations and applied software packages in solving problems of dynamics of multi-body systems [1, 2]. The algorithms under consideration are implemented completely or partially with the aid of state-of-the-art CAS. They are intended for inclusion in the package of symbolic computation “Stability” [2].
@article{ZNSL_1999_258_a13,
     author = {A. V. Banshchikov and L. A. Burlakova and V. D. Irtegov},
     title = {Problems of stability of dynamic systems and computer algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {262--279},
     publisher = {mathdoc},
     volume = {258},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/}
}
TY  - JOUR
AU  - A. V. Banshchikov
AU  - L. A. Burlakova
AU  - V. D. Irtegov
TI  - Problems of stability of dynamic systems and computer algebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 262
EP  - 279
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/
LA  - en
ID  - ZNSL_1999_258_a13
ER  - 
%0 Journal Article
%A A. V. Banshchikov
%A L. A. Burlakova
%A V. D. Irtegov
%T Problems of stability of dynamic systems and computer algebra
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 262-279
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/
%G en
%F ZNSL_1999_258_a13
A. V. Banshchikov; L. A. Burlakova; V. D. Irtegov. Problems of stability of dynamic systems and computer algebra. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Tome 258 (1999), pp. 262-279. http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/