Problems of stability of dynamic systems and computer algebra
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Tome 258 (1999), pp. 262-279
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper presents examples of some problems of stability of motion, for solving which computer algebra systems (CAS) have been used. We have experience of developing and applying problem-oriented systems of symbolic computations and applied software packages in solving problems of dynamics of multi-body systems [1, 2]. The algorithms under consideration are implemented completely or partially with the aid of state-of-the-art CAS. They are intended for inclusion in the package of symbolic computation “Stability” [2].
			
            
            
            
          
        
      @article{ZNSL_1999_258_a13,
     author = {A. V. Banshchikov and L. A. Burlakova and V. D. Irtegov},
     title = {Problems of stability of dynamic systems and computer algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {262--279},
     publisher = {mathdoc},
     volume = {258},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/}
}
                      
                      
                    TY - JOUR AU - A. V. Banshchikov AU - L. A. Burlakova AU - V. D. Irtegov TI - Problems of stability of dynamic systems and computer algebra JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 262 EP - 279 VL - 258 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/ LA - en ID - ZNSL_1999_258_a13 ER -
A. V. Banshchikov; L. A. Burlakova; V. D. Irtegov. Problems of stability of dynamic systems and computer algebra. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Tome 258 (1999), pp. 262-279. http://geodesic.mathdoc.fr/item/ZNSL_1999_258_a13/