Diffraction of creeping waves from a line of a saltus of a curvature (Acoustic three-dimensional medium)
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 28, Tome 257 (1999), pp. 75-92
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of a diffraction of a creeping waves from a line of a rupture of a curvature is investigated, and the “oblique” falling in a three-dimensional acoustic medium is taken into account essentially. Two cases of a rupture of a curvature on a line of interface of surfaces are considered: a curvature of one sign, but different on magnitude, and case of a positive curvature conjugate on a line of a rupture with zero.
@article{ZNSL_1999_257_a4,
author = {N. Ya. Kirpichnikova and V. B. Philippov and A. S. Kirpichnikova},
title = {Diffraction of creeping waves from a line of a~saltus of a~curvature {(Acoustic} three-dimensional medium)},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {75--92},
year = {1999},
volume = {257},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a4/}
}
TY - JOUR AU - N. Ya. Kirpichnikova AU - V. B. Philippov AU - A. S. Kirpichnikova TI - Diffraction of creeping waves from a line of a saltus of a curvature (Acoustic three-dimensional medium) JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 75 EP - 92 VL - 257 UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a4/ LA - ru ID - ZNSL_1999_257_a4 ER -
%0 Journal Article %A N. Ya. Kirpichnikova %A V. B. Philippov %A A. S. Kirpichnikova %T Diffraction of creeping waves from a line of a saltus of a curvature (Acoustic three-dimensional medium) %J Zapiski Nauchnykh Seminarov POMI %D 1999 %P 75-92 %V 257 %U http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a4/ %G ru %F ZNSL_1999_257_a4
N. Ya. Kirpichnikova; V. B. Philippov; A. S. Kirpichnikova. Diffraction of creeping waves from a line of a saltus of a curvature (Acoustic three-dimensional medium). Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 28, Tome 257 (1999), pp. 75-92. http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a4/