On calculation of some integrals, describing the wave fields
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 28, Tome 257 (1999), pp. 44-55

Voir la notice de l'article provenant de la source Math-Net.Ru

Two methods of calculation of scattering amplitude $f(\omega,\omega_0)$ of the wave scattered by the vertex of an arbitrarily shaped cone are justified. It is shown that the approximation $f_d(\omega,\omega_0,t)$, obtained by the method similar to Abel–Poisson's method of summation, converges uniformly in the domain of regularity of $f$. Also the possibility of calculation of $f(\omega,\omega_0)$ when $\omega\in N_1(\omega_0)$ by means of rapidly converging integrals is proved.
@article{ZNSL_1999_257_a2,
     author = {V. V. Kamotskii},
     title = {On calculation of some integrals, describing the wave fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {44--55},
     publisher = {mathdoc},
     volume = {257},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a2/}
}
TY  - JOUR
AU  - V. V. Kamotskii
TI  - On calculation of some integrals, describing the wave fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 44
EP  - 55
VL  - 257
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a2/
LA  - ru
ID  - ZNSL_1999_257_a2
ER  - 
%0 Journal Article
%A V. V. Kamotskii
%T On calculation of some integrals, describing the wave fields
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 44-55
%V 257
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a2/
%G ru
%F ZNSL_1999_257_a2
V. V. Kamotskii. On calculation of some integrals, describing the wave fields. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 28, Tome 257 (1999), pp. 44-55. http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a2/