An asymptotic solution of the problem of the moving with acceleration source of high frequency oscillations in nonhomogeneous media
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 28, Tome 257 (1999), pp. 288-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of the moving source wave field is considered in nonhomogeneous media. It is supposed that velocity of the source is less than the sound velocity for $t<0$ and greater this one for $t>0$ (subsonic – supersonic transition). An asymptotic expansion for the wave field in an neighborhood of the source is constructed on the basis of well known Hadamard's Anzatz. The derived expansion is uniform with respect to the velocity of the source and contains new special functions. These functions are generalization of Hankel and Bessel functions and possess some remarkable properties.
@article{ZNSL_1999_257_a15,
     author = {A. S. Starkov},
     title = {An asymptotic solution of the problem of the moving with acceleration source of high frequency oscillations in nonhomogeneous media},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {288--297},
     year = {1999},
     volume = {257},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a15/}
}
TY  - JOUR
AU  - A. S. Starkov
TI  - An asymptotic solution of the problem of the moving with acceleration source of high frequency oscillations in nonhomogeneous media
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 288
EP  - 297
VL  - 257
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a15/
LA  - ru
ID  - ZNSL_1999_257_a15
ER  - 
%0 Journal Article
%A A. S. Starkov
%T An asymptotic solution of the problem of the moving with acceleration source of high frequency oscillations in nonhomogeneous media
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 288-297
%V 257
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a15/
%G ru
%F ZNSL_1999_257_a15
A. S. Starkov. An asymptotic solution of the problem of the moving with acceleration source of high frequency oscillations in nonhomogeneous media. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 28, Tome 257 (1999), pp. 288-297. http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a15/