On the projecting in the space of solenoidal vector fields
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 28, Tome 257 (1999), pp. 16-43
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\Omega\subset\mathbf R^3$ be a bounded domain; let $\Omega^\xi:=\{x\in\Omega\mid\operatorname{dist}(x,\partial\Omega)\xi\},\xi>0$ be an increasing family of subdomains; let $\varepsilon=\varepsilon(x)$ be a positive function in $\overline{\Omega}$; $\mathscr H:=\{\bold y=\bold y(x)\mid\int_\Omega dx\varepsilon|\bold y|^2\infty,\,\mathrm {div}\,\varepsilon\bold y=0$ in ${\Omega}\}$ be a space of $\varepsilon$-solenoidal vector fields; let $\mathscr H^\xi:=\{\bold y\in\mathscr H\mid\mathrm {supp}\,\bold y\subset\overline{\Omega^\xi}\}$, $\xi>0$ be a family of subspaces; let $G^{\xi}$ be orthogonal projectors in $\mathscr H$ onto $\mathscr H^\xi$. The unitary transform which diagonalizes the family of projectors $\{G^\xi\}$ is constructed: it transfers $\int\xi dG^\xi$ into an operator multiplying by independent variable. An isometry of the transform is proved with the help of the operator Riccati equation for the Neumann–to–Dirichlet map.
			
            
            
            
          
        
      @article{ZNSL_1999_257_a1,
     author = {M. I. Belishev and A. K. Glasman},
     title = {On the projecting in the space of solenoidal vector fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {16--43},
     publisher = {mathdoc},
     volume = {257},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a1/}
}
                      
                      
                    M. I. Belishev; A. K. Glasman. On the projecting in the space of solenoidal vector fields. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 28, Tome 257 (1999), pp. 16-43. http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a1/