On the projecting in the space of solenoidal vector fields
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 28, Tome 257 (1999), pp. 16-43
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\Omega\subset\mathbf R^3$ be a bounded domain; let $\Omega^\xi:=\{x\in\Omega\mid\operatorname{dist}(x,\partial\Omega)<\xi\},\xi>0$ be an increasing family of subdomains; let $\varepsilon=\varepsilon(x)$ be a positive function in $\overline{\Omega}$; $\mathscr H:=\{\bold y=\bold y(x)\mid\int_\Omega dx\varepsilon|\bold y|^2<\infty,\,\mathrm {div}\,\varepsilon\bold y=0$ in ${\Omega}\}$ be a space of $\varepsilon$-solenoidal vector fields; let $\mathscr H^\xi:=\{\bold y\in\mathscr H\mid\mathrm {supp}\,\bold y\subset\overline{\Omega^\xi}\}$, $\xi>0$ be a family of subspaces; let $G^{\xi}$ be orthogonal projectors in $\mathscr H$ onto $\mathscr H^\xi$. The unitary transform which diagonalizes the family of projectors $\{G^\xi\}$ is constructed: it transfers $\int\xi dG^\xi$ into an operator multiplying by independent variable. An isometry of the transform is proved with the help of the operator Riccati equation for the Neumann–to–Dirichlet map.
@article{ZNSL_1999_257_a1,
author = {M. I. Belishev and A. K. Glasman},
title = {On the projecting in the space of solenoidal vector fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {16--43},
year = {1999},
volume = {257},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a1/}
}
M. I. Belishev; A. K. Glasman. On the projecting in the space of solenoidal vector fields. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 28, Tome 257 (1999), pp. 16-43. http://geodesic.mathdoc.fr/item/ZNSL_1999_257_a1/