Spectral estimations for Laplace operator for the discrete Heisenberg group
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 129-144
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $H$ be the discrete 3-dimensional Heisenberg group with the standard generators $x, y,~z$. The element $\Delta$ of the group algebra for $H$ of the form $\Delta=(x+x^{-1}+y+y^{-1})/4$ is called the Laplace operator. This operator can also be defined as transition operator for random walk on the group.
The spectrum of $\Delta$ in the regular representation of $H$ is the  interval $[-1,1]$. Let $E(A)$, where $A$ is a subset of $[-1,1]$, be a family  of spectral projectors for $\Delta$ and $m(A)=(E(A)e,e)$ be the  corresponding spectral measure. Here $e$ is the characteristic  function of the unit element of the group $H$. We estimate the value $m([-1,-1+t]\cup [1-t,1])$ when $t$ tends to 0. More precisely we prove the inequality
$$
m([-1,-1+t]\cup [1-t,1])>\mathrm{const}\,t^{2+\alpha}
$$
for any positive alpha.
			
            
            
            
          
        
      @article{ZNSL_1999_256_a9,
     author = {K. P. Kokhas' and A. Suvorov},
     title = {Spectral estimations for {Laplace} operator for the discrete {Heisenberg} group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {129--144},
     publisher = {mathdoc},
     volume = {256},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a9/}
}
                      
                      
                    TY - JOUR AU - K. P. Kokhas' AU - A. Suvorov TI - Spectral estimations for Laplace operator for the discrete Heisenberg group JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 129 EP - 144 VL - 256 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a9/ LA - ru ID - ZNSL_1999_256_a9 ER -
K. P. Kokhas'; A. Suvorov. Spectral estimations for Laplace operator for the discrete Heisenberg group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 129-144. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a9/