Spectral estimations for Laplace operator for the discrete Heisenberg group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 129-144
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $H$ be the discrete 3-dimensional Heisenberg group with the standard generators $x, y,~z$. The element $\Delta$ of the group algebra for $H$ of the form $\Delta=(x+x^{-1}+y+y^{-1})/4$ is called the Laplace operator. This operator can also be defined as transition operator for random walk on the group. The spectrum of $\Delta$ in the regular representation of $H$ is the interval $[-1,1]$. Let $E(A)$, where $A$ is a subset of $[-1,1]$, be a family of spectral projectors for $\Delta$ and $m(A)=(E(A)e,e)$ be the corresponding spectral measure. Here $e$ is the characteristic function of the unit element of the group $H$. We estimate the value $m([-1,-1+t]\cup [1-t,1])$ when $t$ tends to 0. More precisely we prove the inequality $$ m([-1,-1+t]\cup [1-t,1])>\mathrm{const}\,t^{2+\alpha} $$ for any positive alpha.
@article{ZNSL_1999_256_a9,
author = {K. P. Kokhas' and A. Suvorov},
title = {Spectral estimations for {Laplace} operator for the discrete {Heisenberg} group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {129--144},
year = {1999},
volume = {256},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a9/}
}
K. P. Kokhas'; A. Suvorov. Spectral estimations for Laplace operator for the discrete Heisenberg group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 129-144. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a9/