Spectral estimations for Laplace operator for the discrete Heisenberg group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 129-144

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be the discrete 3-dimensional Heisenberg group with the standard generators $x, y,~z$. The element $\Delta$ of the group algebra for $H$ of the form $\Delta=(x+x^{-1}+y+y^{-1})/4$ is called the Laplace operator. This operator can also be defined as transition operator for random walk on the group. The spectrum of $\Delta$ in the regular representation of $H$ is the interval $[-1,1]$. Let $E(A)$, where $A$ is a subset of $[-1,1]$, be a family of spectral projectors for $\Delta$ and $m(A)=(E(A)e,e)$ be the corresponding spectral measure. Here $e$ is the characteristic function of the unit element of the group $H$. We estimate the value $m([-1,-1+t]\cup [1-t,1])$ when $t$ tends to 0. More precisely we prove the inequality $$ m([-1,-1+t]\cup [1-t,1])>\mathrm{const}\,t^{2+\alpha} $$ for any positive alpha.
@article{ZNSL_1999_256_a9,
     author = {K. P. Kokhas' and A. Suvorov},
     title = {Spectral estimations for {Laplace} operator for the discrete {Heisenberg} group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {129--144},
     publisher = {mathdoc},
     volume = {256},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a9/}
}
TY  - JOUR
AU  - K. P. Kokhas'
AU  - A. Suvorov
TI  - Spectral estimations for Laplace operator for the discrete Heisenberg group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 129
EP  - 144
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a9/
LA  - ru
ID  - ZNSL_1999_256_a9
ER  - 
%0 Journal Article
%A K. P. Kokhas'
%A A. Suvorov
%T Spectral estimations for Laplace operator for the discrete Heisenberg group
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 129-144
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a9/
%G ru
%F ZNSL_1999_256_a9
K. P. Kokhas'; A. Suvorov. Spectral estimations for Laplace operator for the discrete Heisenberg group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 129-144. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a9/