The algebra of conjugacy classes in symmetric groups, and partial permutations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 95-120
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove a convolution formula for the conjugacy classes in symmetric groups conjectured by the second author. A combinatorial interpretation of coefficients is provided. As a main tool we introduce new semigroup of partial permutations. We describe its structure, representations, and characters. We also discuss filtrations on the subalgebra of invariants in the semigroup algebra.
@article{ZNSL_1999_256_a7,
author = {V. N. Ivanov and S. V. Kerov},
title = {The algebra of conjugacy classes in symmetric groups, and partial permutations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {95--120},
year = {1999},
volume = {256},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a7/}
}
V. N. Ivanov; S. V. Kerov. The algebra of conjugacy classes in symmetric groups, and partial permutations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 95-120. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a7/