The algebra of conjugacy classes in symmetric groups, and partial permutations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 95-120
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove a convolution formula for the conjugacy classes in symmetric groups conjectured by the second author. A combinatorial interpretation of coefficients is provided. As a main tool we introduce new semigroup of partial permutations. We describe its structure, representations, and characters. We also discuss filtrations on the subalgebra of invariants in the semigroup algebra.
			
            
            
            
          
        
      @article{ZNSL_1999_256_a7,
     author = {V. N. Ivanov and S. V. Kerov},
     title = {The algebra of conjugacy classes in symmetric groups, and partial permutations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--120},
     publisher = {mathdoc},
     volume = {256},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a7/}
}
                      
                      
                    TY - JOUR AU - V. N. Ivanov AU - S. V. Kerov TI - The algebra of conjugacy classes in symmetric groups, and partial permutations JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 95 EP - 120 VL - 256 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a7/ LA - ru ID - ZNSL_1999_256_a7 ER -
V. N. Ivanov; S. V. Kerov. The algebra of conjugacy classes in symmetric groups, and partial permutations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 95-120. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a7/