Tiling of groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 69-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The following problem formulated by A. M. Vershik connected to several questions in the traectory theory of the finite generated groups pavements is being researched. The result is: let $G$ be decomposed into the free product of two nontrivial groups. Then for any finite subset $S$ of group $G$ there exists a finite subset $P$ of group $G$ including $S$ such that $G$ is being covered by nonintersected left translations of the set $P$.
@article{ZNSL_1999_256_a5,
     author = {M. V. Zheludev},
     title = {Tiling of groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--72},
     year = {1999},
     volume = {256},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a5/}
}
TY  - JOUR
AU  - M. V. Zheludev
TI  - Tiling of groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 69
EP  - 72
VL  - 256
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a5/
LA  - ru
ID  - ZNSL_1999_256_a5
ER  - 
%0 Journal Article
%A M. V. Zheludev
%T Tiling of groups
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 69-72
%V 256
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a5/
%G ru
%F ZNSL_1999_256_a5
M. V. Zheludev. Tiling of groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 69-72. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a5/