Locally imbedding of Hall's group to the finite groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 25-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the Hall's group (solvable not residually finite group of the degree 3) could be imbedded locally to finite groups in the sense of [1].
@article{ZNSL_1999_256_a2,
     author = {S. V. Dobrynin},
     title = {Locally imbedding of {Hall's} group to the finite groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {256},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a2/}
}
TY  - JOUR
AU  - S. V. Dobrynin
TI  - Locally imbedding of Hall's group to the finite groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 25
EP  - 30
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a2/
LA  - ru
ID  - ZNSL_1999_256_a2
ER  - 
%0 Journal Article
%A S. V. Dobrynin
%T Locally imbedding of Hall's group to the finite groups
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 25-30
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a2/
%G ru
%F ZNSL_1999_256_a2
S. V. Dobrynin. Locally imbedding of Hall's group to the finite groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 25-30. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a2/