Central limit theorem for random strict partition
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 212-223

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a set of partitions of number $n$ on distinct summands (so called strict partitions) with uniform distribution on it. We investigate fluctuations of random partition near its limit shape, for large $n$. Usage of geometrical language allows to state the problem in terms of limit behaviour of random step functions (Young diagram). Central limit theorem for such functions is proven. The method of investigation essentially uses the notion of large canonical ensemble of partitions.
@article{ZNSL_1999_256_a12,
     author = {Yu. V. Yakubovich},
     title = {Central limit theorem for random strict partition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {212--223},
     publisher = {mathdoc},
     volume = {256},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a12/}
}
TY  - JOUR
AU  - Yu. V. Yakubovich
TI  - Central limit theorem for random strict partition
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 212
EP  - 223
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a12/
LA  - ru
ID  - ZNSL_1999_256_a12
ER  - 
%0 Journal Article
%A Yu. V. Yakubovich
%T Central limit theorem for random strict partition
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 212-223
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a12/
%G ru
%F ZNSL_1999_256_a12
Yu. V. Yakubovich. Central limit theorem for random strict partition. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 212-223. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a12/