On the structure of real injective $W^*$-factors of type III$_{\lambda}$, $0\lambda1$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 148-163
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider $*$-automorphisms and $*$-antiautomorphisms of real and complex factors. We establish both the uniqueness of the class of $*$-automorphisms (with $\mod(\cdot )=\lambda$, $\lambda\ne1$) of a real injective II$_\infty$ factor and the uniqueness of the class of $*$-antiautomorphisms (with$\mod(\cdot )=\sqrt{\lambda}$, $\lambda\ne1$) of a complex injective II$_\infty$ factor. It is well known that for complex factors the notions of hyperfiniteness and injectivity are equivalent. Here we prove that for real factors the two notions are no longer equivalent.
@article{ZNSL_1998_255_a9,
author = {A. A. Rakhimov},
title = {On the structure of real injective $W^*$-factors of type {III}$_{\lambda}$, $0<\lambda<1$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {148--163},
year = {1998},
volume = {255},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a9/}
}
A. A. Rakhimov. On the structure of real injective $W^*$-factors of type III$_{\lambda}$, $0<\lambda<1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 148-163. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a9/