The monotonicity of average power means
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 140-147
Voir la notice de l'article provenant de la source Math-Net.Ru
A new numerical inequality for average power means is presented. Let $\alpha,\beta\in[-\infty,+\infty]$
and let $a=(a_k)_{k\ge1}$ be a sequence of positive numbers. Consider the operator $M_{\alpha}(a)=\biggl\{\biggl(\dfrac{a_1^{\alpha}+a_2^{\alpha}+\ldots+a_k^{\alpha}}k\biggr)^\frac1{\alpha}\biggr\}_{k\ge1}$. We denote by $M_{\beta}\circ M_{\alpha}$ the superposition of these operators. The following assertion is proved: if $\alpha\beta$, then $M_{\beta}\circ M_{\alpha}(a)\le M_{\alpha}\circ M_{\beta}(a)$.
@article{ZNSL_1998_255_a8,
author = {A. N. Petrov},
title = {The monotonicity of average power means},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {140--147},
publisher = {mathdoc},
volume = {255},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a8/}
}
A. N. Petrov. The monotonicity of average power means. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 140-147. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a8/