The monotonicity of average power means
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 140-147

Voir la notice de l'article provenant de la source Math-Net.Ru

A new numerical inequality for average power means is presented. Let $\alpha,\beta\in[-\infty,+\infty]$ and let $a=(a_k)_{k\ge1}$ be a sequence of positive numbers. Consider the operator $M_{\alpha}(a)=\biggl\{\biggl(\dfrac{a_1^{\alpha}+a_2^{\alpha}+\ldots+a_k^{\alpha}}k\biggr)^\frac1{\alpha}\biggr\}_{k\ge1}$. We denote by $M_{\beta}\circ M_{\alpha}$ the superposition of these operators. The following assertion is proved: if $\alpha\beta$, then $M_{\beta}\circ M_{\alpha}(a)\le M_{\alpha}\circ M_{\beta}(a)$.
@article{ZNSL_1998_255_a8,
     author = {A. N. Petrov},
     title = {The monotonicity of average power means},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--147},
     publisher = {mathdoc},
     volume = {255},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a8/}
}
TY  - JOUR
AU  - A. N. Petrov
TI  - The monotonicity of average power means
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 140
EP  - 147
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a8/
LA  - ru
ID  - ZNSL_1998_255_a8
ER  - 
%0 Journal Article
%A A. N. Petrov
%T The monotonicity of average power means
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 140-147
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a8/
%G ru
%F ZNSL_1998_255_a8
A. N. Petrov. The monotonicity of average power means. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 140-147. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a8/