Carleson measures and uniformly perfect sets
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 92-103
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show that the description of Carleson measures on the Bergman spase of analytic functions on a finitely connected domain $G$ with the power weight is the same one as in the unit disk iff the complement
$\overline{\mathbb C}\setminus G$ be an unbounded set without isolated points. In general case the
complement of such domain $G$ have to be a uniformly perfect set.
			
            
            
            
          
        
      @article{ZNSL_1998_255_a5,
     author = {V. L. Oleinik},
     title = {Carleson measures and uniformly perfect sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--103},
     publisher = {mathdoc},
     volume = {255},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a5/}
}
                      
                      
                    V. L. Oleinik. Carleson measures and uniformly perfect sets. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 92-103. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a5/