Carleson measures and uniformly perfect sets
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 92-103

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the description of Carleson measures on the Bergman spase of analytic functions on a finitely connected domain $G$ with the power weight is the same one as in the unit disk iff the complement $\overline{\mathbb C}\setminus G$ be an unbounded set without isolated points. In general case the complement of such domain $G$ have to be a uniformly perfect set.
@article{ZNSL_1998_255_a5,
     author = {V. L. Oleinik},
     title = {Carleson measures and uniformly perfect sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--103},
     publisher = {mathdoc},
     volume = {255},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a5/}
}
TY  - JOUR
AU  - V. L. Oleinik
TI  - Carleson measures and uniformly perfect sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 92
EP  - 103
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a5/
LA  - ru
ID  - ZNSL_1998_255_a5
ER  - 
%0 Journal Article
%A V. L. Oleinik
%T Carleson measures and uniformly perfect sets
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 92-103
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a5/
%G ru
%F ZNSL_1998_255_a5
V. L. Oleinik. Carleson measures and uniformly perfect sets. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 92-103. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a5/